Sickle cell vasoocclusion and rescue in a microfluidic device.

نویسندگان

  • J M Higgins
  • D T Eddington
  • S N Bhatia
  • L Mahadevan
چکیده

The pathophysiology of sickle cell disease is complicated by the multiscale processes that link the molecular genotype to the organismal phenotype: hemoglobin polymerization occurring in milliseconds, microscopic cellular sickling in a few seconds or less [Eaton WA, Hofrichter J (1990) Adv Protein Chem 40:63-279], and macroscopic vessel occlusion over a time scale of minutes, the last of which is necessary for a crisis [Bunn HF (1997) N Engl J Med 337:762-769]. Using a minimal but robust artificial microfluidic environment, we show that it is possible to evoke, control, and inhibit the collective vasoocclusive or jamming event in sickle cell disease. We use a combination of geometric, physical, chemical, and biological means to quantify the phase space for the onset of a jamming event, as well as its dissolution, and find that oxygen-dependent sickle hemoglobin polymerization and melting alone are sufficient to recreate jamming and rescue. We further show that a key source of the heterogeneity in occlusion arises from the slow collective jamming of a confined, flowing suspension of soft cells that change their morphology and rheology relatively quickly. Finally, we quantify and investigate the effects of small-molecule inhibitors of polymerization and therapeutic red blood cell exchange on this dynamical process. Our experimental study integrates the dynamics of collective processes associated with occlusion at the molecular, polymer, cellular, and tissue level; lays the foundation for a quantitative understanding of the rate-limiting processes; and provides a potential tool for optimizing and individualizing treatment, and identifying new therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice.

Activation of vascular endothelium plays an essential role in vasoocclusion in sickle cell disease. The anti-inflammatory agents dexamethasone and adhesion molecule-blocking antibodies were used to inhibit endothelial cell activation and hypoxia-induced vasoocclusion. Transgenic sickle mice, expressing human alpha-, beta(S)-, and beta(S-Antilles)-globins, had an activated vascular endothelium i...

متن کامل

Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations.

Vasoocclusion crisis is a key hallmark of sickle cell anemia. Although early studies suggest that this crisis is caused by blockage of a single elongated cell, recent experiments have revealed that vasoocclusion is a complex process triggered by adhesive interactions among different cell groups in multiple stages. However, the quantification of the biophysical characteristics of sickle cell ane...

متن کامل

Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm.

Vascular occlusion is the major cause of morbidity and mortality in sickle cell disease but its mechanisms are poorly understood. We demonstrate by using intravital microscopy in mice expressing human sickle hemoglobin (SS) that SS red blood cells (RBCs) bind to adherent leukocytes in inflamed venules, producing vasoocclusion of cremasteric venules. SS mice deficient in P- and E-selectins, whic...

متن کامل

Enhanced adherence of sickle erythrocytes to thrombin-treated endothelial cells involves interendothelial cell gap formation.

The adherence of sickle erythrocytes to vascular endothelium has the capacity to initiate vasoocclusion. The known effects of thrombin on endothelial cell function and the increased activity of thrombin in sickle cell disease led us to examine the effect of thrombin on the adhesivity of cultured endothelial cells for sickle erythrocytes. In particular, we studied whether the effect of thrombin ...

متن کامل

Anti-inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice.

In sickle cell disease, inflammatory activation of vascular endothelium and increased leukocyte-endothelium interaction may play an important role in the occurrence of vasoocclusion. In sickle mouse models, inflammatory stimuli (e.g., hypoxia-reoxygenation and cytokines) result in increased leukocyte recruitment and can initiate vasoocclusion, suggesting that anti-inflammatory therapy could be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 51  شماره 

صفحات  -

تاریخ انتشار 2007